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Short Papers — —

Stability Ranges of Regenerative Frequency Dividers

Employing Double Balanced Mixers in

Large-Signal Operation

Rainer H. Derksen, Volker Liick, and Hans-Martin Rein

Abstract —Regenerative frequency dividers, in general, may suffer
from frequeney ranges of unstable operation. An analysis of the stable
ranges was given by Immovilli and Mantovani in 1973. However, its
usability is restricted, since small-signal operation is assumed. In recent
years the first monolithically integrated regenerative frequency dividers
were presented. These are examples of circuits on which the analysis of
Immovilli and Mantovani is not applicable, since the quasi-small-signal

assumption is not met. This paper presents a simple theory which
makes it possible to calculate the frequency ranges of stable operation
for a regenerative divider employing a double balanced mixer in large-

signal operation. The validity of the derived formulas is tested by
various network simulations. Though the presented theory is simple, it

describes the boundaries of the stable ranges quite correctly.

I. INTRODUCTION

In 1985 the first monolithic integrated regenerative frequeney

divider (RFD) was realized [11,[21. The circuit concept proposed

there is characterized by the use of a transimpedance stage in

series with a four-quadrant multiplier as mixer [14]. Meanwhile,

this circuit concept has been successfully applied to frequency

dividers fabricated in different technologies [3]-[7], and even the

world’s fastest monolithic integrated silicon frequency divider,

with a maximum input frequency of 18 GHz [5]-[7], is based on

this circuit concept.

For the design of an RFD, it has to be borne in mind that an

RFD may suffer from frequency ranges of instable operation [3],

[8], [10]. An analysis of the stable operating ranges of an RFD

has been carried out by Immovilli and Mantovani [8] (and also

presented in [10]). But their theory is not applicable to any

circuit concepts which do not meet the small-signal assumptions

made there, for example, the kind of circuits mentioned above

[1]-[7]. Therefore, a simple large-signal theory for calculating

the stable ranges of this kind of RFD has been developed and

will be described here.

11. STABILITY CONDITIONS

The principle of operation of an RFD is quite well known and

therefore is not repeated here. It was described by Miller [9] in

1939 and has also been presented in [1]-[6], [8], and [101.

Fig. 1 shows a block diagram of an RFD with the definition of

the different signals. The input signal, Si, has angular frequency
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Fig. 1. Block diagram for RFD analysis.

o,( = 21T~,), phase zero (the phase of one of the signals can be

arbitrarily chose n, because only the phase relations with respect

to one another are of interest), and amplitude Ai. Thus

si(t)=Aicos(aJJ). (1)

The fed-back mixer input signal, Sf, is

sf(t)=Af cos(@, t/2+ a). (2)

It is assumeci that the mixer is a double balanced one; the mixer

output signal therefore has the form

S~(t)=A~COS (Olt/2+ p)+ A~3COS(30tt/2+K3)+ “ ~“

(3)

and the phases p, P3, IJ5, ‘ “ . as well as the amplitudes

Am, Am3, An,5, . . . depend in general on the kind of mixer and

on the mixer input quantities xt !, A ~, and a. For given A, and

Af the remaining phase dependence I.L= p(a) will be referred

to as the mixer phase characteristic.

Both the IIow-pass filter and the amplifier have an amplitude

response and a phase response, but for the sake of simplicity the

total frequency dependence is concentrated here in the low-pass

filter, and the amplifier is an ideal one with gain g. Further-

more, it is assumed that only the fundamental harmonic of 1he

signal Sm passes the low-pass filter, while all harmonics of

higher order are suppressed entirely. Thus the signal sot after

the amplifier can be expressed as

%t(t)=& 4Lp A~COS(%t\2+~ +@). (4)

ALP = ALp(,f) is the magnitude and @ = @(f) the phase of (he

frequency response of the low-pass filter.

The signal Saut must be equal to the fed-back mixer input

signal, Sf; thus the following amplitude condition can be ob-

tained from (2) and (4):

Af = gALpAm (5)

as well as th~e phase condition

a=~+@+k.2T, k=O, kl, ~2, ”””. (6)

Conditions (5) and (6) must be met for the steady-state opera-

tion of the divicler. Attention must now be given to whether an

operating point determined by (5) and (6) is stable, i.e., whether

small changes of the operating point caused by disturbances

decrease wil:h time.

It is presupposed that the phase condition is independent of

the amplitude condition. This restriction is required in order to
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simplify the analysis. It has subsequently been justified by test-

ing the analytical results by network simulations.

At first, the phase condition is considered and the question

whether an operating point (ao, Ko), with V. = w(~o), is stable

must be examined. The stability condition is calculated using the

same procedure used by Immovilli and Mantovani [8]. With

p’(a), the first derivative of p with respect to a, one finds that

the operating point (ao, MO) is stable if

ll-L’(CIO)I<l. (7)

(For the derivation, see [3].)

Taking into account that Am is a function of Al and A ~, the

amplitude condition after (5) can be written more precisely as

Af=gALpAm(A,, Af). (8)

In abbreviated form,

Xlf =A(Af) (9)

is obtained for a given A,.

Usually the function A(x)/.x decreases with increasing x;

this is especially true for the circuits described in [1]-[7]. By

virtue of this functional dependence the resulting value of Af is

both unique and stable.

III. LARGE-SIGNAL THEORY

A. Mixer Phase Characteristic and Stable Ranges

In this large-signal theory the simplifying approximation is

made that both mixer input signals act on the mixer like a

rectangular-shaped signal of large amplitude. It is presupposed

here that the amplitude condition of (5) is always met and that

only the signs of the signals are decisive (i.e. SM = + 1 if the signs

of Si and Sf are equal, and s~ = – 1 otherwise). If, owing to

small input signals, the gain inherent in the mixer becomes so

small that the amplitude condition can no longer be met, the

large-signal approximation is no longer permissible.

The signal after the amplifier can be written as

Sout =Aout. cos(@, t/2+ w(a) +o). (lo)

Now the mixer phase characteristic ~(a) and the resulting

angles @, a, and ~(a), for which the circuit is stable, will be

determined. Because of the periodicity of these quantities, it is

sufficient to look at the intervals O < a <180°, 0> k(a)>

–180°, and O<@<3600.

The mixer output signal is given by

s~(wlt/2) = sign (si) .sign(sf)

=sign[cos(OLt)] .sign[cos(O, t/2+ a)] (11)

and its fundamental harmonic be denoted by

S~o=A~O. cos[aJzt/’2+ p(a)]. (12)

By Fourier analysis of SW,(eq. (11)) the mixer phase characteris-

tic defined by (12) can be obtained [3], [12]:

~(a) =

[

o fora=O

arctan [(J2– cos a)/sin a] – 90° for O<a<45°

arctan [cos cr/(J2– sin a)] –90° for 45°< a <135° “

arctan [ – (/2+cos a)/sin a] – 90” for 135°< a <180°

(13)

From this result the stable ranges can now be determined by

examining for which a the absolute value of the slope of p(a) is
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Fig. 2. Simulated circuit.

smaller than unity (eq. (7)). The following ranges of values for

the angles a, p(a), and @ = a – ~(a) at which the circuit is

stable are obtained:

19’’ <a!<71° 109< a <161°

–35°>p>–550 – 125°> p > – 145°

55°< @ <125° 23y < @ <305°. (14)

For the frequency ranges with stable operation, the following

deductions can be made on the basis of the presented theory.

The boundaries of the ranges are determined only by the total

phase in the loop, without the loop gain having any influence

(because the signals act like “selector switches”). Furthermore,

it is true that there will be different frequency boundaries of the

stable ranges because of different filter characteristics; however,

with regard to the total phase 0, the boundaries are always

determined by (14). (The influence of different filter characteris-

tics on input sensitivity versus frequency has been examined in

[31.)

B. Test of the Validi@ by Simulation

A problem in the analysis of RFD’s is the fact that in reality

the mixer and low-pass functions are merged, in contrast to the

assumption of separated nonreactive functional blocks in Fig. 1.

However, to test the validity of the large-signal analysis above in

subsection A, it was attempted to realize the functional blocks

separately. Then the stable operating ranges of a frequency

divider built up in that way were determined by simulation and

compared with the calculated ones. The simulations were car-

ried out with a special analog computer [11], which was also

used for the simulation of the circuits described in [1]–[4].

The circuit in total is shown in Fig. 2, where the mixer is

formed by the transistors TI –T8 and EFI –EF4. The mixer

circuit (including transimpedance stage (T7, T8) and level shifters

EFI -EFJ corresponds to the first stage of the 8:1 RFD de-

scribed in [4], but for the simulation all the frequency-determin-
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Fig. 3. Phase ranges for stable operation: comparison between simula-
tion results (bold lines), large-signal theory presented in this work
(hatched areas), and small-signal theory given in [81 (arrows).

ing transistor parasitic (junction capacitances and transit time)

are set to zero. Thus, the mixer is described for all frequencies

only by its dc characteristics. The frequency behavior of the loop

is modeled by low-pass filters of fourth order with different

amplitude and phase responses. Analog delay lines are con-

nected in series with the filters. These lines cause a constant

signal delay toand a constant gain g’ (both continuously ad-

justable). The filters are commercially available active filters.

The analog delay lines are built with charge-coupled devices

[12].

With this configuration, numerous simulations with different

gains g’ and delay times tO of the analog delay line as well as

three different filter characteristics (Butterworth, Bessel, and

RC) were performed [3], [12] and the frequency ranges of stable

operation were identified.

From the boundaries of the frequency ranges with stable

operation the total phase in the loop was determined as follows.

Let f, be the’ lower frequency limit of a stable range. From the

phase response (3J f ) of the filter, the relevant phase @F1=

OF( fl /2) can be obtained and from the adjusted delay time tO

the corresponding phase Odl = – 360°. ( fl /2)” to can be calcu-

lated. Thus the total phase results in

@l=@p[–1800. ~l. t0. (15)

Analogously, the following equation is obtained for the phase

t3U belonging to the upper frequency limit, fu, of a stable range:

8U = @3FU– 180°. f,,. to. (16)

As an example, Fig. 3 shows the phase ranges derived from

the simulated frequency ranges of stable operation ( fl, fu) by

use of (15) and (16) for a Butterworth filter and for different

gains g’ and delay times to.The phase ranges, in which the

circuit according to the presented large-signal theory must be

stable (eq. (14)), are hatched.

Taking into account the underlying simplifications (especially

the assumption of the total suppression of the harmonics in the

loop signal) as well as simulation uncertainties, it can be stated

that the stable ranges are quite well approximated by the

theoretically calculated boundaries.

The results confirm the decisive influence of the total phase

being effective in the loop. If the change of the phase with

frequency or the loop delay is large, the usable (stable) fre-

quency band splits into several narrow frequency bands. In

consequence, for the design of a divider, which is to have a

maximum divider frequency as high as possible and an unsplit

usable frequency band as large as possible, two limitations have

to be taken into account. One of these is the cutoff frequency,

where the loop gain falls below unity; the other is that the phase

@ changes with frequency as little as possible and only within

the boundaries given by (14).

In contrast to the theory presented here, a trial application of

the formulas derived in [8] to large-signal operation gives rather

poor results. (It should be noted once more that the derivation

in [8] is based on small-signal analysis.) This is demonstrated in

Fig. 3, where one of two possible sets of stable ranges according

to [8] are indicated by arrows. (For the other s~t the stable

ranges of the first set are unstable and vice versa, the bound-

aries of the ranges remaining unchanged. In any event the result

of the comparison would be the same.) The boundaries of the

stable ranges according to [81 are exactly in the middle of the

stable ranges calculated from the presented large-signal theory.

This means in particular that an actually unstable range lies

within a range which will be stable according to [8]. In conse-

quence, the formulas given in [8] cannot be applied to the kind

of frequency dividers investigated in this work.

IV, FINAL REMARKS

The large-signal theory presented here has been developed

because the available analysis by Immovilli and Mantovani is not

applicable to the important circuit concept used in [1]–[7] for

monolithic integrated high-speed frequency dividers. But, (of

course, it is of more general benefit for RFD’s and also has

been successfully used to analyze RFD’s built of discrete GaAs

dual-gate MESFIET’S [13].

It has been found that, in spite of the relatively simple

assumptions for the description of the large-signal behavior, the

boundaries of the stable ranges are described with sufficient

accuracy by the derived analytical relations.
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A Multistrip Moment Method Technique and Its

Application to the Post Problem in a

Circular Waveguide

Xiao-Hui Zhu, Dai-Zong Chen, and Shi-Jin Wang

Abstract —A moment method technique for solving obstacle problems
in a waveguide is presented, Instead of the procedure using a multifila-
ment current representation, which leads to a slowly converging series, a
multistrip representation of the current is proposed. In the procedure,

the true currents on obstacle surfaces are replaced by equivalent planar

currents in a number of waveguide cross sections inside the obstacle.
The technique is applied to a pair of metallic posts in the TE1l-mode

circular waveguide. Numerical results are compared with experimental

data.

I. INTRODUCTION

The moment method (MM) is one of the most efficient

numerical methods and has been widely used for solving such

waveguide problems as discontinuities, junctions, transitions,

excitations, obstacles, and eigenvalue problems [1]–[9]. For the

inductive post in a rectangular waveguide, a two-dimensional

MM solution was developed by Leviatan et al. [5], [61, who

computed the parameters of the equivalent circuit and current

distribution for a post of large diameter. For the probe-excited

rectangular waveguide, a three-dimensional MM solution was

developed by Jarem [7], who gave the input impedance and

surface currents on the probe. These MM solutions used a

multifilament current representation for the post, or probe; we

refer to these as multifilament MM’s. In the multifilament MM

procedure, the true electric currents induced on the obstacle

surfaces are replaced by a number of filamentary currents inside

the obstacles. The boundary condition is then tested on the

obstacle surfaces and a set of linear equations, i.e., a matrix

equation, is derived. A shortcoming of the multifilament MM is

that the value of matrix elements tends to infinity as the

electric-field testing point approaches the filament, If the

Green’s function is expressed as an infinite summation of nor-

mal mode functions which satisfy the boundary condition on the
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Fig. 1. Obstacle and imaginary strips in a waveguide.

waveguide wall, the matrix elements will be led to a slowly

converging series, which is not convenient for computation. In a

rectangular waveguide, fortunately, this series can be converted

to a rapidly converging one by introducing an auxiliary series

[5]-{7], or the static Green’s function [2], and the multifilament

MM can then be used successfully for the post and probe

problems. In waveguides having other cross sections, to the

authors’ knowledge, such an auxiliary series is difficult to find.

As a result, the multifilament MM has only a restricted applica-

tion.

In this paper, a multistrip current representation is intro-

duced to develop a moment method technique for obstacle

problems in waveguides of arbitra~ section, The true currents

on the obstacle surfaces are replaced by equivalent planar

currents in a number of waveguide cross sections inside the

obstacle, and the unknown planar currents are then expanded.

The matrix equation is obtained by testing the tangential electric

fields along properly chosen matching lines on the obstacle

surfaces. The multistrip MM procedure will be described for-

mally in Section II.

In a circular waveguide, the concentric discontinuities have

been studied by many authors [8], [9]. By contrast, there has

been little study of nonaxisymmetric discontinuities of circular

waveguides, especially those with finite thickness. The multistrip

MM should prove useful in solving such problems. The case of a

pair of posts in a TE1l-mode circular waveguide will be analyzed

in Section III.

II. BASIC FORMULATION

The problem considered is depicted in Fig. 1. An obstacle is

located in a cylindrical waveguide of arbitrary cross section

whose axis is in the z direction. Extending the procedure to a
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