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Short Papers

Stability Ranges of Regenerative Frequency Dividers
Employing Double Balanced Mixers in
Large-Signal Operation

Rainer H. Derksen, Volker Liick, and Hans-Martin Rein

Abstract —Regenerative frequency dividers, in general, may suffer
from frequency ranges of unstable operation. An analysis of the stable
ranges was given by Immovilli and Mantovani in 1973. However, its
usability is restricted, since small-signal operation is assumed. In recent
years the first monolithically integrated regenerative frequency dividers
were presented. These are examples of circuits on which the analysis of
Immovilli and Mantovani is not applicable, since the quasi-small-signal
assumption is not met. This paper presents a simple theory which
makes it possible to calculate the frequency ranges of stable operation
for a regenerative divider employing a double balanced mixer in large-
signal operation. The validity of the derived formulas is tested by
various network simulations. Though the presented theory is simple, it
describes the boundaries of the stable ranges quite correctly.

I. INTRODUCTION

In 1985 the first monolithic integrated regenerative frequency
divider (RFD) was realized [1], [2]. The circuit concept proposed
there is characterized by the use of a transimpedance stage in
series with a four-quadrant multiplier as mixer [14]. Meanwhile,
this circuit concept has been successfully applied to frequency
dividers fabricated in different technologies [3]-[7], and even the
world’s fastest monolithic integrated silicon frequency divider,
with a maximum input frequency of 18 GHz [5]-[7], is based on
this circuit concept.

For the design of an RFD, it has to be borne in mind that an
RFD may suffer from frequency ranges of instable operation [3],
[8], [10]. An analysis of the stable operating ranges of an RFD
has been carried out by Immovilli and Mantovani [8] (and also
presented in [10]). But their theory is not applicable to any
circuit concepts which do not meet the small-signal assumptions
made there, for example, the kind of circuits mentioned above
[1}-[7]. Therefore, a simple large-signal theory for calculating
the stable ranges of this kind of RFD has been developed and
will be described here.

II. StaBiLiTy CONDITIONS

The principle of operation of an RFD is quite well known and
therefore is not repeated here. It was described by Miller [9] in
1939 and has also been presented in [1]-[6], [8], and [10].

Fig. 1 shows a block diagram of an RFD with the definition of
the different signals. The input signal, s;, has angular frequency
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Fig. 1. Block diagram for RFD analysis.

w,(=27f,), phase zero (the phase of one of the signals can be
arbitrarily chosen, because only the phase relations with respect
to one another are of interest), and amplitude A;. Thus

s(t)=A;cos(w,t). (1)
The fed-back mixer input signal, s, is
se(t)= A cos(w,t/2+a). 2)

It is assumed that the mixer is a double balanced one; the mixer
output signal therefore has the form

5,(t) = A, cos(w,t/2+p)+ A, 3008 Bt /2+ pg)+ -
3

and the phases u,p3, s, as well as the amplitudes
A, Apss Ays, -+ depend in general on the kind of mixer and
on the mixer input quantities A4,, 4 # and a. For given A4, and
A the remaining phase dependence u = w(a) will be referred
to as the mixer phase characteristic.

Both the low-pass filter and the amplifier have an amplitude
response and a phase response, but for the sake of simplicity the
total frequency dependence is concentrated here in the low-pass
filter, and the amplifier is an ideal one with gain g. Further-
more, it is assumed that only the fundamental harmonic of the
signal s,, passes the low-pass filter, while all harmonics of
higher order are suppressed entirely. Thus the signal s, after
the amplifier can be expressed as_

Sout(t) = gAp A, cos(w;t /2+ p+ 0). (4)

Ayp= A p(f) is the magnitude and © = O(f) the phase of the
frequency response of the low-pass filter.

The signal s, must be equal to the fed-back mixer input

signal, 5 thus the following amplitude condition can be ob-
tained from (2) and (4):

Af =gApA,, &)
as well as the phase condition
a=pu+0+ k27, k=0,4+1,4+£2,---. (6)

Conditions (5) and (6) must be met for the steady-state opera-
tion of the divider. Attention must now be given to whether an
operating point determined by (5) and (6) is stable, i.e., whether
small changes of the operating point caused by disturbances
decrease with time.

It is presupposed that the phase condition is independent of
the amplitude condition. This restriction is required in order to
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simplify the analysis. It has subsequently been justified by test-
ing the analytical results by network simulations.

At first, the phase condition is considered and the question
whether an operating point (@, ), with py = ulay), is stable
must be examined. The stability condition is calculated using the
same procedure used by Immovilli and Mantovani [8]. With
¢ (a), the first derivative of u with respect to «, one finds that
the operating point (ag, u,) is stable if

W (arg)l < 1.

(For the derivation, see [3].)
Taking into account that A,, is a function of 4, and 4 £ the
amplitude condition after (5) can be written more precisely as

Ap=gdyp A, (A, Af). (8)

In abbreviated form,

(N

Ap=A(4y) 9

is obtained for a given A,.

Usually the function A(x)/x decreases with increasing x;
this is especially true for the circuits described in [1]-[7]. By
virtue of this functional dependence the resulting value of A ¥ is
both unique and stable.

III. Larce-SigNAL THEORY
A. Mixer Phase Characteristic and Stable Ranges

In this large-signal theory the simplifying approximation is
made that both mixer input signals act on the mixer like a
rectangular-shaped signal of large amplitude. It is presupposed
here that the amplitude condition of (5) is always met and that
only the signs of the signals are decisive (i.e. s,, = + 1 if the signs
of 5; and s, are equal, and 5, =—1 otherwise). If, owing to
small input signals, the gain inherent in the mixer becomes so
small that the amplitude condition can no longer be met, the
large-signal approximation is no longer permissible.

The signal after the amplifier can be written as

(= Ay cos(w,t/2+ p(a)+8). (10)
Now the mixer phase characteristic u(a) and the resulting
angles ©, «, and u(a), for which the circuit is stable, will be
determined. Because of the periodicity of these quantities, it is
sufficient to look at the intervals 0< a <180°, 0> ula)>
—180°, and 0 < © < 360°.
The mixer output signal is given by
Sy, t/2) =sign(s;) sign(s;)
= sign[cos(w,t)] sign[cos(w,t /2+a)] (11)
and its fundamental harmonic be denoted by
Spo = Amo-cos[o,t /2+ p(a)]. (12)
By Fourier analysis of s,, (eq. (11)) the mixer phase characteris-
tic defined by (12) can be obtained [3], [12]:
p(a)=
0 fora=10
arctan [(y2—cos @) /sin ] —90° for 0 < @ < 45°
arctan[cos & /(y2—sina )] —90° for 45° < a < 135°
arctan| —(y2+cosa)/sina]—90° for 135° <a <180°

(13)

From this result the stable ranges can now be determined by
examining for which « the absolute value of the slope of u(a) is

sO\l
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Fig. 2. Simulated circuit.

smaller than unity (eq. (7)). The following ranges of values for
the angles «, u(a), and ® = a — ula) at which the circuit is
stable are obtained:

19° <a<7I° 109° <@ < 161°

—35 >u>-55 ~125° > u > —145°

55° <@ <125° 235° < ® < 305°. (14)

For the frequency ranges with stable operation, the following
deductions can be made on the basis of the presented theory.
The boundaries of the ranges are determined only by the total
phase in the loop, without the loop gain having any influence
(because the signals act like “selector switches”). Furthermore,
it is true that there will be different frequency boundaries of the
stable ranges because of different filter characteristics; however,
with regard to the total phase ©®, the boundaries arc always
determined by (14). (The influence of different filter characteris-
tics on input sensitivity versus frequency has been examined in

[31)
B. Test of the Validity by Simulation

A problem in the analysis of RFD’s is the fact that in reality
the mixer and low-pass functions are merged, in contrast to the
assumption of separated nonreactive functional blocks in Fig. 1.
However, to test the validity of the large-signal analysis above in
subsection A, it was attempted to realize the functional blocks
separately. Then the stable operating ranges of a frequency
divider built up in that way were determined by simulation and
compared with the calculated ones. The simulations were car-
ried out with a special analog computer [11], which was also
used for the simulation of the circuits described in [11-[4].

The circuit in total is shown in Fig. 2, where the mixer is
formed by the transistors T;-T; and EF,-EF,. The mixer
circuit (including transimpedance stage (T, T) and level shifters
EF,-EF,) corresponds to the first stage of the 8:1 RFD de-
scribed in [4], but for the simulation all the frequency-determin-
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Fig. 3. Phase ranges for stable operation: comparison between simula-
tion results (bold lines), large-signal theory presented in this work
(hatched areas), and small-signal theory given in [8] (arrows).

ing transistor parasitics (junction capacitances and transit time)
are set to zero. Thus, the mixer is described for all frequencies
only by its dc characteristics. The frequency behavior of the loop
is modeled by low-pass filters of fourth order with different
amplitude and phase responses. Analog delay lines are con-
nected in series with the filters. These lines cause a constant
signal delay #, and a constant gain g’ (both continuously ad-
justable). The filters are commercially available active filters.
The analog delay lines are built with charge-coupled devices
[12].

With this configuration, numerous simulations with different
gains g’ and delay times f; of the analog delay line as well as
three different filter characteristics (Butterworth, Bessel, and
RC) were performed [3], [12] and the frequency ranges of stable
operation were identified.

From the boundaries of the frequency ranges with stable
operation the total phase in the loop was determined as follows.
Let f; be the'lower frequency limit of a stable range. From the
phase response @(f) of the filter, the relevant phase @ =
®,(f,/2) can be obtained and from the adjusted delay time ¢,
the corresponding phase 0, = —360°-(f, /2)-#, can be calcu-
lated. Thus the total phase results in

0, =05 —180°" f;" £,. (15)

Analogously, the following equation is obtained for the phase
®, belonging to the upper frequency limit, f,, of a stable range:

0,=0,, —180° f, 1. (16)

As an example, Fig. 3 shows the phase ranges derived from
the simulated frequency ranges of stable operation (f},f,) by
use of (15) and (16) for a Butterworth filter and for different
gains g’ and delay times r;. The phase ranges, in which the
circuit according to the presented large-signal theory must be
stable (eq. (14)), are hatched.

Taking into account the underlying simplifications (especially
the assumption of the total suppression of the harmonics in the
loop signal) as well as simulation uncertainties, it can be stated
that the stable ranges are quite well approximated by the
theoretically calculated boundaries.

The results confirm the decisive influence of the total phase
being effective in the loop. If the change of the phase with
frequency or the loop delay is large, the usable (stable) fre-
quency band splits into several narrow frequency bands. In
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consequence, for the design of a divider, which is to have a
maximum divider frequency as high as possible and an unsplit
usable frequency band as large as possible, two limitations have
to be taken into account. One of these is the cutoff frequency,
where the loop gain falls below unity; the other is that the phase
® changes with frequency as little as possible and only within
the boundaries given by (14).

In contrast to the theory presented here, a trial application of
the formulas derived in [8] to large-signal operation gives rather
poor results. (It should be noted once more that the derivation
in [8] is based on small-signal analysis.) This is demonstrated in
Fig. 3, where one of two possible sets of stable ranges according
to [8] are indicated by arrows. (For the other set the stable
ranges of the first set are unstable and vice versa, the bound-
aries of the ranges remaining unchanged. In any event the result
of the comparison would be the same.) The boundaries of the
stable ranges according to [8] are exactly in the middle of the
stable ranges calculated from the presented large-signal theory.
This means in particular that an actually unstable range lies
within a range which will be stable according to [8]. In conse-
quence, the formulas given in [8] cannot be applied to the kind
of frequency dividers investigated in this work.

IV. FinaL REMARKS

The large-signal theory presented here has been developed
because the available analysis by Immovilli and Mantovani is not
applicable to the important circuit concept used in [1]-[7] for
monolithic integrated high-speced frequency dividers. But, of
course, it is of more general benefit for RFD’s and also has
been successfully used to analyze RFD’s built of discrete GaAs
dual-gate MESFET’s [13].

It has been found that, in spite of the relatively simple
assumptions for the description of the large-signal behavior, the
boundaries of the stable ranges are described with sufficient
accuracy by the derived analytical relations.
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A Multistrip Moment Method Technique and Its
Application to the Post Preblem in a
Circular Waveguide

Xiao-Hui Zhu, Dai-Zong Chen, and Shi-Jin Wang

Abstract —A moment method technique for solving obstacle problems
in a waveguide is presented. Instead of the procedure using a multifila-
ment current representation, which leads to a slowly converging series, a
multistrip representation of the current is proposed. In the procedure,
the true currents on obstacle surfaces are replaced by equivalent planar
currents in a number of waveguide cross sections inside the obstacle.
The technique is applied to a pair of metallic posts in the TE,;-mode
circular waveguide. Numerical results are compared with experimental
data.

I. INTRODUCTION

The moment method (MM) is one of the most efficient
numerical methods and has been widely used for solving such
waveguide problems as discontinuities, junctions, transitions,
excitations, obstacles, and eigenvalue problems [1]-[9]. For the
inductive post in a rectangular waveguide, a two-dimensional
MM solution was developed by Leviatan et al. [5], [6], who
computed the parameters of the equivalent circuit and current
distribution for a post of large diameter. For the probe-excited
rectangular waveguide, a three-dimensional MM solution was
developed by Jarem [7], who gave the input impedance and
surface currents on the probe. These MM solutions used a
multifilament current representation for the post, or probe; we
refer to these as multifilament MM’s. In the multifilament MM
procedure, the true electric currents induced on the obstacle
surfaces are replaced by a number of filamentary currents inside
the obstacles. The boundary condition is then tested on the
obstacle surfaces and a set of linear equations, i.e., a matrix
equation, is derived. A shortcoming of the multifilament MM is
that the value of matrix elements tends to infinity as the
electric-field testing point approaches the filament. If the
Green’s function is expressed as an infinite summation of nor-
mal mode functions which satisfy the boundary condition on the
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Fig. 1. Obstacle and imaginary strips in a waveguide.

waveguide wall, the matrix elements will be led to a slowly
converging series, which is not convenient for computation. In a
rectangular waveguide, fortunately, this series can be converted
to a rapidly converging one by introducing an auxiliary series
[51-{7], or the static Green’s function [2], and the multifilament
MM can then be used successfully for the post and probe
problems. In waveguides having other cross sections, to the
authors’ knowledge, such an auxiliary series is difficult to find.
As a result, the multifilament MM has only a restricted applica-
tion.

In this paper, a multistrip current representation is intro-
duced to develop a moment method technique for obstacle
problems in waveguides of arbitrary section. The true currents
on the obstacle surfaces are replaced by equivalent planar
currents in a number of waveguide cross sections inside the
obstacle, and the unknown planar currents are then expanded.
The matrix equation is obtained by testing the tangential electric
fields along properly chosen matching lines on the obstacle
surfaces. The multistrip MM procedure will be described for-
mally in Section IL

In a circular waveguide, the concentric discontinuities have
been studied by many authors [8], [9]. By contrast, there has
been little study of nonaxisymmetric discontinuities of circular
waveguides, especially those with finite thickness. The multistrip
MM should prove useful in solving such problems. The case of a
pair of posts in a TE;-mode circular waveguide will be analyzed
in Section III.

1I. Basic ForMuULATION

The problem considered is depicted in Fig. 1. An obstacle is
located in a cylindrical waveguide of arbitrary cross section
whose axis is in the z direction. Extending the procedure to a
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